Reversibility of cold- and light-stress tolerance and accompanying changes of metabolite and antioxidant levels in the two high mountain plant species Soldanella alpina and Ranunculus glacialis.

نویسندگان

  • P Streb
  • S Aubert
  • E Gout
  • R Bligny
چکیده

Two high mountain plants Soldanella alpina (L.) and Ranunculus glacialis (L.) were transferred from their natural environment to two different growth conditions (22 degrees C and 6 degrees C) at low elevation in order to investigate the possibility of de-acclimation to light and cold and the importance of antioxidants and metabolite levels. The results were compared with the lowland crop plant Pisum sativum (L.) as a control. Leaves of R. glacialis grown for 3 weeks at 22 degrees C were more sensitive to light-stress (defined as damage to photosynthesis, reduction of catalase activity (EC 1.11.1.6) and bleaching of chlorophyll) than leaves collected in high mountains or grown at 6 degrees C. Light-stress tolerance of S. alpina leaves was not markedly changed. Therefore, acclimation is reversible in R. glacialis leaves, but constitutive or long-lasting in S. alpina leaves. The different growth conditions induced significant changes in non-photochemical fluorescence quenching (qN) and the contents of antioxidants and xanthophyll cycle pigments. These changes did not correlate with light-stress tolerance, questioning their role for light- and cold-acclimation of both alpine species. However, ascorbate contents remained very high in leaves of S. alpina under all growth conditions (12-19% of total soluble carbon). In cold-acclimated leaves of R. glacialis, malate represented one of the most abundant compounds of total soluble carbon (22%). Malate contents declined significantly in de-acclimated leaves, suggesting a possible involvement of malate, or malate metabolism, in light-stress tolerance. Leaves of the lowland plant P. sativum were more sensitive to light-stress than the alpine species, and contained only low amounts of malate and ascorbate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of chilling and high light stress on phenolic metabolism and antioxidant activity of Aloe vera L. plants

High light (HL) can limit plant photosynthetic activity, growth and productivity. The HL effect was more pronounced in plants grown at low temperature. In order to determine the effects of chilling stress (4 0C) and light intensities (450 and 850 µmol m-2 s-1) on antioxidant defense system and  phenolic metabolism of Aloe vera L., an experiment was  conducted in a randomized complete block desi...

متن کامل

Comparative Analysis of Epicuticular Waxes from Some High Alpine Plant Species

Botanisches Institut der Universität zu Köln, Gyrhofstraße 15, D-5000 Köln 41 Z. Naturforsch. 40c, 599—605 (1985); received May 6, 1985 Epicuticular Waxes, Alpine Plants, Ecophysiology, Relation to Altitude, Ultrastructure Epicuticular waxes were extracted and analysed from leaves of 7 different high alpine plant species, with 3 species harvested at different altitudes: Salix herbacea (1950 m, ...

متن کامل

Mitigation of chilling and freezing stresses through colonization with arbuscular ‎mycorrhizal fungi in spring barley ‎

Cold stress is an ‎important limiting factor for cereal production. Barley is a host species for arbuscular mycorrhizal fungi (AMF) with a high genetic diversity in response to cold stress. In order to explore the mechanisms for the ameliorative effect of AMF under cold stress, an experiment was undertaken using completely randomized block design with three factors including temperature treatme...

متن کامل

Cold-induced Changes of Antioxidant Enzymes Activity and Lipid Peroxidation in Two Canola (Brassica napus L.) Cultivars

This study was conducted on two canola (Brassica napus) cultivars, Okapi a winter type and cold tolerant and Rgs003 a spring type and cold sensitive. Seedlings were grown in an environmentally controlled growth room with 16 h d-1 photoperiod at 22/16 °C (day/night, control). At the 4-leaf stage, half of pots were transferred to a cold growth room for 7 d at 10/3°C (day/night, cold treatment) an...

متن کامل

Melatonin; Growth regulator and strong antioxidant in plants

Melatonin (N-acetyl-5-methoxytryptamine) is an indole metabolite derived from tryptophan and synthesized in plant cells in the chloroplasts and mitochondria. Melatonin is present in all plant species, with large variations in its level depending on the plant organ or tissue, it is a molecule endowed with a multitude of functions that make it worthy to be referred to as a plant growth regulator....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 54 381  شماره 

صفحات  -

تاریخ انتشار 2003